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Computers and Mathematics

Edited by Keith Devlin

This month’s column
Three software reviews make up the first column of 1994. First, Larry
Lambe looks at AXIOM. Then, Suzanne Molnar reports her experiences
with the Student Edition of Object Logo. Finally, Jim Northrup reviews
Fields&Operators.

All three reviewers have contributed to the column in the past, and
it is good to see them back. But I am always on the lookout for new
reviewers. In particular, my list of volunteers willing to review Macintosh
software is starting to run down. If you use a Macintosh and would like
to make your own contribution to the column, please send me a message
at the address below (e-mail or snail-mail), mentioning any particular
preferences as to the kind of software you would like to review.

Editor’s address:

Professor Keith Devlin

School of Science

Saint Mary’s College of California
P.O. Box 3517

Moraga, California 94575

Correspondence by electronic mail is preferred, to:

devlin@msri.org.

Reviews of Mathematical Software

AXIOM System
Reviewed by Larry Lambe*

A little more than four years ago, I wrote about “Scratchpad
II as a tool for mathematical research” in this column [L1].
Scratchpad has grown into what is now called the AXIOM
system, and there is a lot to say about this evolution. I think
of it more as a maturation, although neither term is quite right
for what has happened. In fact, as you will see, my original
remarks about the mathematical nature of Scratchpad can be

*Larry Lambe is at Rutgers University in New Jersey. He can be reached
by e-mail at: 11ambe@cesl.rutgers.edu. The author is grateful to members
of the Computer Algebra Group, IBM Research, Charlie Fletcher, Philip Santas,
and Nicolas Robidoux for useful conversations concerning this note.

taken verbatim in connection with AXIOM. Some of the new
things are a user interface that rivals anything that can be
found in the market these days, a flexible graphics interface
that can provide both insight and enjoyment, and a new book
[JS] that covers the system quite nicely.

Specifically, AXIOM is a “mathematically object-oriented”
environment consisting of five major components and a sixth
that is under development and soon to be released. They are

1. an interactive computational environment,

2. a “hypertext” interactive documentation system that is

user programmable,

3. agraphics package that manipulates and displays objects
in two and three dimensions,
an object-oriented language,
an extensive mathematical library compiled into ma-
chine code for efficiency with complete access to the
source code for all users, and

6. alink to external libraries written in other languages.

The thrust of the 1989 article was the object-oriented
nature of the system and, in particular, its inclination towards
mathematics. This is an important and distinguishing feature
of AXIOM. Issues such as “code reusability” have been
around in computer science for some thirty years. The notion
of parameterized types in the formal theory of computer
languages goes back quite a way as well. These days more
and more of such concepts are finding their way into other
areas of science that use computer aids.

We are still in a time when there are different terminologies
in use for exactly the same concepts in different object-
oriented languages. Because of this, it will be useful to set up
a dictionary, through the use of analogy, to define some terms.

I’'m pretty sure that you’ve all heard phrases like “object-
oriented thinking” from other sources. I will not attempt a
definition here, but since I am addressing mathematicians,
1 can safely say that you should be familiar with it, since
most of you do it. In object-oriented programming, however,
there are also some important ideas needed that fall outside
of traditional mathematical experience. The best way to
proceed is to think about the foundations for some of the
usual structures we encounter in mathematics, for example,
polynomials.

Let’s write the free module on a set X over a ring R as
FreeModule(R,X). Of course, in mathematics, there is no

ok
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trouble in realizing a functor such as “FreeModule”, whose
parameters (arguments) are a ring R and a set X and whose
value is a module over R, as a concrete object.

Given the functor above, we can easily define all sorts
of mathematical structures. For example, if we are given a
monoid M, i.e., a set M with a binary operation *:MxM—M
which is associative and has an identity element, we can form
the monoid ring of M over a ring R by defining an operation on
FreeModule(R,M) as follows. First define a function

MxM—FreeModule (R,M)

by simply “coextending” the given operation on M. Now
extend this function bilinearly to

FreeModule(R,M) xFreeModule(R,M) —FreeModule(R,M).

This gives a mathematical structure which we will denote
by MonoidRing(R,M). Let’s agree to call these functors
“constructors” to emphasize the point that they produce new
mathematical objects out of collections of others. It is now
easy to see that we can get an object isomorphic to the
usual polynomial ring in one indeterminant over a ring R by
simply forming MonoidRing(R,IN), where IN is the monoid
of natural numbers with addition. If we agree to write a linear
combination rin; + ---+ rpng wWhere r; € R and n; € N
as rit™ + .- + rt™, we obtain the usual representation of
polynomials as well.

It might surprise you to find out that the polynomial
ring in one indeterminant over an arbitrary ring R may be
defined in AXIOM in exactly the above way. Furthermore,
there are facilities for providing a wide range of display forms
automatically (so elements of MonoidRing(R,IN) can indeed
be made to display as polynomials in “t”).

Two important components of object-oriented paradigms
are encapsulation and inheritance. In AXIOM, an abstract
datatype has the properties of encapsulation (private and
public parts, etc.). Datatypes in AXIOM are typically param-
eterized and represent mathematical structures. An important
consequence of the object-oriented paradigm (in the above
sense) is polymorphism, i.e., objects (programs and mathe-
matical structures) can be reused in a variety of contexts.
The abstract type FreeModule (R,X) is parameterized by the
abstract types Ring (the R parameter) and Set (the X parame-
ter). Furthermore, note that the addition in MonoidRing(R,M)
comes from its “parent” FreeModule(R,M) upon which it is
built. This is an example of inheritance. In this light it is clear
that these aspects of object orientation have been present in
mathematics for quite some time.

Concepts falling outside of the traditional mathematical
experience, but relevant in a discussion of object-oriented
methods, are the notions of dynamic binding and dynamic
dispatch as well as dynamic memory allocation and automatic
garbage collection. We will not go into detail concerning
these concepts here, but the interested reader will find more
information in the references [C], [MW]. Object-oriented
languages do not have to have built-in memory management.
C++ is an example.

None of the major computer algebra systems today have
parameterized types built into the language except AXIOM.
On the other hand, all of the major computer algebra systems
have some form of dynamic allocation and automatic garbage
collection built in. It is fair to say that these latter concepts
are what make symbolic computation systems so attractive to
most researchers. Without them a user is not free to spend all
of his time concentrating on mathematical concepts. Instead,
he or she must, for example, constantly make sure that there
is enough memory available for a process which may be
growing in a way that is not measurable before execution and
also come up with some scheme for reclaiming memory that
has been used, but which will not be used again unless steps
are taken to make it so. Let me now go on to say some specific
things about the six components of the AXIOM system given
above.

First, there is the interactive environment. Among com-
puter algebra systems, AXIOM is unique in the way that it
dynamically builds datatypes based on user input. If you
enter x * *x2 + 1/3, it will build polynomials with rational
coefficients. If you enter x * %2 + 0.333 x %i, it will create
polynomials with complex coefficients. Type inferencing also
applies to function definitions. You can define a function f by
f(x) == x +*2. If f is applied to an integer, the type of f is
chosen to be Integer — integer. If f is applied to a rational
function such as 1/(z + 1), the type of f is chosen to be

Fraction Polynomial Integer — Fraction Polynomial
Integer,

etc.

Occasionally, type declarations are necessary. AXIOM
provides for that. For example, to declare x to be a polynomial
with integer coefficients you may use the syntax x:POLY INT.
In fact, all of the choices AXIOM makes can be made instead
by the user, if desired.

The hypertext facility is called “HyperDoc” in AXIOM.
A sequence of windows is displayed on the next page.
The windows should be read from left to right and top to
bottom. Beginning with the “HyperDoc” window, the next
window was obtained by clicking on “Basic Commands”.
The “Series” field was clicked on to give the third window,
“Series Basic Command”, and in that window the choice for
“Formula” was chosen. This produced the fourth window,
“Power Series Basic Command”, in which “Puiseux Series”
was chosen. That produced the fifth window. At this point
some other choices can be made. It is possible to overwrite
the data which automatically come up in the “Puiseux Series
Basic Command” window and enter other data. This makes it
convenient to experiment with AXIOM. The given data were
chosen. By clicking on the “Continue” button, those data were
used to create a valid AXIOM statement displayed in a new
window labelled “Basic Command”. Some other HyperDoc
pages cause collections of statements to be generated. If the
“Do It” button is clicked, the statement is executed in the
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EXIT HELP Ky perBds g

This isthe top level of HyperBoc. Toselect an itew, move the
cursor with the mouse to a word in: this font then click amouse
button. For an introduction to HyperDoc, click on HELP,

What would you like to do?

E Basic Commands  Solve problems by Filling in templates,
@ Topics Learn how touse Axiom, by topic,

B Brouse Browse through the dxiom library.

I Examples See examples of use of the library,

B Reference Scan on=line documentation on Axiom,

B Settings Axiom system commands and variables,

B Hyperloc Write your own HyperDoc.

Series Basic Command

EXIT HOME =
Create a geries by:

B Expansion Expand a function inaseries around a point
B Fornula Give a formula for the i’th coefficient

EXIT Puiseux Series Basic Command HOIME =

B Eiiter the formula for the general coefficient of the series
({30 - 4}/6)/Fa

B Enter the index variable for your Formula
@ Enter the pover series variable
B Enter the point about which you want to expand

For Puiseux Series, the exponent of the power series variable
ranges froman initial value, an arbitary rational number, to

plus infinity; the step size isan any positive rational number,

B Enter the initial value of index (a rational number) 4

B Enter the step size (a positive rational number)

Continue

Basic Commands

EXIT |

B Caleulos - Compite integrals, derivatives, or limits
R Matrix Create amatrix

8 Iraw Create 2D or 3D plots.,

HSeries Create a power series

M Solve Solve an equation or system of equations.

EXH— Power Series Basic Command . H{]HE

Select the kind of power series you want to create:
B Taylor Series
Series.where the exponent ranges over the integers froma

nop-negative integer value to plus infinity by an arbitrary
positive integer step size
B Laorent Series
Series where the exponent ranges froman arbitrary integer
value toplus infinity by anarbitracy positive integer step
size
8 Puiseux Series
Series where the exponent ranges from anarbitrary rational
value to plus infinity by an arbitrary positive rational

number step size

Basic Command

EXIT
Heve i the dxiom command

yop could bave isgued fo compute this resuls:

series(n+=> (=1)#4{{3#n ~4)/6)/Ffactorialin - 1/3);7( =
0,473..,2)

Select Exit o make this windov go auay. '
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original AXIOM interpreter automatically. Here is the result:

(1) ->series(n +->(-1)**((3*n - 4)/6)/
factorial(n - 1/3),x = 0,4/3..,2)

4 10
3 1 3 5
(1) x --x +0&x)
6
Type:
UnivariatePuiseuxSeries(Expression Integer,x,0).

There are also facilities for causing new interpreter windows
to pop up and execute AXIOM commands automatically (e.g.,
using the “Examples” field of the HyperDoc window). Also,
by clicking on the “HyperDoc” field of the HyperDoc window,
you can learn how to write your own HyperDoc lessons on
any subject you like along the lines of what has been explained
(and more).

The system has a convenient browser that lets you find
out about a domain’s operations, attributes, ancestors in the
hierarchy, and cross references. All of this is HyperDoc
oriented.

There are tutorials in HyperDoc that cover the basic
graphics. The first procedure that I will describe is the “draw”
function. This function can be used quite naturally and simply,
as in the command

draw(x**2,x=-1..1)

which causes a window to pop up with the graph of the
given parabola in the given range. It can, however, also be
embellished somewhat, as in the command

draw(tan x,x=-2*%pi..2*%pi,
clip==true,curveColor==blue()).

There is a wide range of draw options, and they are accessed
by the syntax indicated above. The “Clip” option as written
turns clipping on, i.e., large values are shut off (the user can
adjust the maximal value, if desired). Many more examples
of this sort of thing are given in the book [JS], and complete
information is available through hyperdoc.

The user can graph parametric equations and surfaces
through the use of the draw procedure as well. In fact graphs
may be manipulated as objects in AXIOM. For a bit of
whimsey, the built-in procedure “makeObject” was used to
produce the picture given on this page. The AXIOM code is
quite straightforward, and the first part of it is given here.

ruled(yl,y2,y3,gl,g82,83) ==
-- create expressions for the parameterization
x : EXPR INT :=y1 + 5 * gl
y : EXPR INT := y2 + s * g2
z : EXPR INT :=y3 + s * g3
-- return the three coordinates
[x,y,z]

Computers and Mathematics

sphere(r,a,b,c) ==

x : EXPR INT := r * cos(u) * cos(t) + a
y : EXPR INT := r * cos(u) * sin(t) + b
z : EXPR INT :=r * sin(u) + ¢
(x,y,2z]

xx := ruled(t,t**2,1,cos(t),sin(t),t)

sp := makeObject(surface(xx.1,xx.2,xx.3),
t=-%pi/2..%pi/2,8=-2..2,_
var1Steps==35,var2Steps==35)
xx := ruled(t/2,t**2,1,cos(t)/2,sin(t)/2,t/4)

makeObject (surface(xx.1,xx.2,xx.3+1.2),
t=-%pi..%pi,s=-2..2,space==sp,_
var1Steps==35,var2Steps==35)

¥odern Art (%)

The first call to makeObject creates the object sp, and
the next one given above has the draw option space==sp
which causes the graph argument to be added to the space sp.
Following the lines indicated above, more scaling was done,
more graphs were added to the space, and then spheres of
various radii and locations were added. A more mathematical
use of AXIOM’s graphical facilities can be found in [LL].

Moving on to AXIOM’s object-oriented compiler, let me
refer the reader to the 1989 article [L1], where the basic
concepts are discussed, and the book [JS]. Version 2.0 of
AXIOM will provide a compiler for the A# programming
language which has a syntax similiar to the current compiler
for AXIOM but which generalizes many concepts and produces
more efficient code. In addition, with A#in place, the user will
be able to take advantage of interlanguage communications.
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The compiler is used to produce the AXIOM library and
can also be used by any user to produce new library files (or
even replace system files). It would be impossible to list all
of the mathematical expertise built into AXIOM in this space.
The 742-page book [JS] is a good but brief introduction to
what is present. To get an idea of the level of abstraction and
extensibility possible, the reader might want to take advantage
of the (p)reprint series at NAG, Inc. Send e-mail to Dr. Richard
Luczak (rl@nag. com) for more information.

For an application of the full power of AXIOM’s compiler
and the interactive mathematical environment, let me point
to [L2] and [L3], where it was used to set up categories
and domains of computation in order to derive formulas in
a complex area of algebra, and [AB], where it was used to
discover an unexpected theorem enabling the authors to give
simpler proofs of results in [A]. (It is due to a large backlog
that [AB] has appeared before [A]!) The reference [L2] also
contains general information about the system.

Finally, release 2.0 of AXIOM will also have the “NAG-
Link” in place. This is a facility which uses AXIOM and
HyperDoc to link to the NAG FORTRAN library software
over a network so that AXIOM’s environment can be used
to manage accurate numerical calculations involving root
finding, interpolation, optimization, integration, ODEs, PDEs,
and statistical applications.

For general information contact John Zurawski at NAG,
INC., 1400 Opus Place, Suite 200, Downers Grove, IL 60515
(johnz@nag. com).

For questions about AXIOM and technical support you
may contact: Tom Ryan (ryan@nag. com) for the academic en-
vironment; Sheila Caswell (caswell@nag. com) or Tony Nilles
(nilles@nag.com) for the industrial or government environ-
ments; and axiom@watson.ibm.com for technical support.
Outside the Unites States contact infodesk@nag.co.uk.
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Object Logo™
Student Edition
Reviewed by Suzanne M. Molnar*

Object Logo™ Student Edition is an implementation of the
programming language Logo for the Macintosh. It is available
from Paradigm Software Inc. (P.O. Box 2995, Cambridge,
MA 02238; 617-576-7675) for $49.95. System requirements
include a Macintosh Plus computer or greater with at least 1
megabyte of RAM (2 are recommended) and System 6.0.4 or
later. The software is compatible with System 7 with 24-bit
addressing. For the purpose of this review it was run on a
Macintosh II with 5 megabytes of RAM and System 6.0.7.

Object Logo™ Student Edition provides the functionality
of the mathematics and list processing of Logo and turtle
geometry. In addition it supports an object-oriented pro-
gramming environment. The full version of Object Logo™
($195.00) includes a file compiler, application generator,
MIDI (music) and robotics modules, and a complete 465-page
Object Logo™ Reference Manual. At the time of this writing
the full version was available for $135.00 for owners of the
Student Edition.

The Student Edition comes with the 186-page book Logo
for the Macintosh: An Introduction through Object Logo™
by Harold Abelson and Amanda Abelson [1]. After working
through the first few chapters, the user has the groundwork
for further exploration into turtle geometry, recursion, and list
processing even if one has not programmed. This is a primary
advantage if Object Logo™ is to be used by students with
little or no programming background. If you have familiarity
with the programming language LISP, from which Logo’s use
of lists is adapted, the learning curve is a straight line with
small slope!

There are three windows available to the user of Object
Logo™, illustrated in Figures 1 and 2 on pages 19 and
20, respectively. When Object Logo™ begins, the Listener
window appears with the ?-prompt. This is the window where
interactive sessions occur. The Graphics window (or turtle
window) also appears upon start-up, provided the Object
Logo™ Elementary file—the program which controls turtles
from the keyboard, mouse, and menu—is placed in the Startup
Folder. One turtle appears at the center of this window. The
third window is the file window for creating, editing, and
saving programs.

Since Object Logo™ is interactive, procedures may be
written in the Listener window without using the file window.
The transcript of the Listener session can be saved but will
not run, as it has responses interspersed with commands.

*Suzanne Molnar teaches mathematics and computer science at the College
of St. Catherine, St. Paul, MN. e-mail: smmolnar@alex.stkate.edu.
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