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The equations derived in kinetic theory express a desired quantity in terms of a prob-
ability density. The solution to these equations often requires computational techniques.
For example, the Direct Simulation Monte Carlo (DSMC) method is a well-known pow-
erful technique for computational rarefied gas dynamics. DSMC uses an algorithm that
evolves an initial distribution in time using random sampling. The sampling is achieved
classically through the use of a pseudo-random number generator. Alternatively, Quasi-
Monte Carlo methods (QMCMs) can replace calls to a pseudo-random number generator
by calls to a quasi-random number generator. QMCMs are known to have better con-
vergence rates than Monte Carlo methods for high-dimensional integration, but it is not
trivial to make QMCM work well in contexts outside of Monte Carlo integration, such as
DSMC. In fact, näıve replacement of calls to a pseudo-random number generator by calls
to a quasi-random generator can fail utterly. In a previous study, we illustrated these
difficulties and discussed possible means to overcome them. In context of DSMC, we
conclude that little can be gained through use of quasi-random sequences. In this work,
we present results for an approach with an experimental method that uses a smoothed
accept/reject stage.1–3 Also, in the context of “direct methods” we find promising results.

Introduction: DSMC Background
We continue our report on a series of experiments with algorithms used for approximating solutions to the

Boltzmann equation.4–7 We briefly review the Discrete Simulation Monte Carlo (DSMC) method of Bird5 as
given by Garcia8 and also revisit the subject of quasi-random number generators (QRNGs) as compared to
pseudo-random number generators (PRNGs). Next we describe our experiments in which the PRNGs in Bird’s
programs9 were replaced by quasi-random number generators QRNGs and review the results.

Bird5 applied Monte Carlo methods to gas dynamics in the mid 1960s with an algorithm he named Direct
Simulation Monte Carlo (DSMC). In Section 10.2 of his book, he explained that the algorithm was based on
physical reasoning analogous to the derivation of the Boltzmann equation. The main idea of DSMC is to construct
a stochastic process for a many-particle system that evolves in time. The process begins with an initial particle
distribution (t = 0) and for t > 0 models gas dynamics realistically in the way the particle distribution evolves.
Wagner10 recently proved that Bird’s method converges to a solution of the Boltzmann equation in a suitable
limit.

Alternatively, Nanbu11,12 derived a simulation procedure directly from the Boltzmann equation. A modifi-
cation of this algorithm was given by Babovsky13 and Nanbu’s method was shown to converge14 to a solution of
the Boltzmann equation as the number of particles is allowed to grow indefinitely (and the solution is sufficiently
smooth). The Kac N -particle equation15 was used as the basis for another class of algorithms by Ivanov et
al.16,17 in the spatially uniform case. The authors modeled the Leontovich equation in the spatially non-uniform
case. For more discussion of the relationship between the equations just mentioned and the Boltzmann equation,
see the references just cited along with Nanbu’s 1983 paper.18
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Standard DSMC Algorithm

All the methods mentioned above have been implemented using PRNGs19 and several authors have studied
the effects of replacing the PRNGs in various schemes for approximating solutions to Boltzmann’s equation
in various special cases.20–24 We are interested in investigating the effect of adapting Bird’s algorithm to the
quasi-random setting. Here we follow Garcia’s description of DSMC.8

The region (finite volume of space) to be considered is partitioned into cells. Initially N particles are dis-
tributed in a uniformly random way throughout the system with a predetermined number particles in each cell.
Each particle in the simulation represents a number Na of actual particles in the physical system. In addition
to its initial position ri, each particle is also given an initial velocity vi according to the time t = 0 (initial)
distribution. Particle evolution is carried out in discrete time steps ∆t in two phases, advection and collision.

In the advection phase, particles move without interaction so that their positions are updated using the
formula ri 7→ ri + ∆tvi. If a particle reaches a boundary it is processed according to appropriate boundary
conditions. After all particles have moved, a given number are randomly selected for the collision stage. Only
particles within the same cell are allowed to interact and a set of collisions is processed at each time step. All
pairs of particles are candidates for collision regardless of their positions within the cell. A collision probability
can be derived depending on the model. As is usually the case however it is difficult or expensive (or both) to
sample this distribution directly. Instead, an accept/reject25 procedure is implemented. If the pair is selected, the
new positions and velocities are calculated as explained below. If the pair is rejected, the algorithm repeats the
second step above. The calculation continues until the required number of candidate pairs has been processed.
The post-collision velocities are computed using conservation of linear momentum and energy. This gives an
incomplete set of equations that is closed by choosing two uniformly distributed random angles over a unit
sphere. The required number of candidates is determined using the ratio of the total of accepted candidates to
the total number of candidates.

Note that particle collisions are determined by a sample drawn from a discrete probability space (the space
of all pairs of particles in a given cell) while the random angles over the sphere are drawn from a continuous
uniform distribution.

Quasi–Random Monte Carlo

We begin with a brief description of a classic quasi-random number generator and then give two examples of
the effect of adapting standard Monte Carlo methods to use quasi-random number generators.

In 1935 van der Corput26 constructed a sequence that distributes numbers very uniformly in [0, 1]. For a
non-negative integer n and digits di ∈ {0, 1}, write

n = d0 + d1 2 + d2 22 + . . .+ dk 2k. (1)

Let

Φ2(n) =
d0

2
+
d1

22
+ . . .+

dk
2k+1

. (2)

This can be done for any “base” b: For digits δi(n) ∈ {0, . . . , b− 1}, write

n =
k∑
i=0

δi(n) bi (3)

and let

Φb(n) =
k∑
i=0

δi(n) b−i−1. (4)

These sequences are called quasi-random or low discrepancy sequences.27 There are many types of quasi-random
sequences. For now, the ones described above are the only kind we need consider. Quasi-random sequences are
generally much more uniform than pseudo-random sequences. This property is made quite precise in the book
by Niederreiter.27 For example, using the built-in function rand() from the gcc compiler, Figure(1) compares a
pseudo-random sequence with a van der Corput sequence, base three, using histograms. In two dimensions, a
pseudo-random sample of 10, 000 points in the unit square is compared with a quasi-random sample of 10, 000
points in the same domain using a Halton sequence28 in Figure(2).
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a) Histogram of a sample of 5, 000 pseudo-random points. b) Histogram of a sample of 5, 000 base 3 van der Corput
points..

Figure 1 Comparison of standard Monte Carlo sampling and quasi-random Monte Carlo when simulating
sampling from a uniform distribution.

a) Pseudo-random points tend to clump (not optimal). b) Quasi-random LDS (Halton Sequence) produces a
much more uniform distribution of points.

Figure 2 Comparison of pseudo-random and quasi-random sequences in the unit sphere. The Halton
sequence (b) generates a much more uniform distribution.

Quasi–Random Monte Carlo Integration
Recall29 that the Monte Carlo integration of a function

f : [0, 1]s = [0, 1]× . . .× [0, 1] → R (5)

is an approximation of the form ∫
[0,1]s

≈ 1
N

N∑
i=1

f(x̄i) (6)

where {x̄1, . . . , x̄N} is a sequence of random elements of the hypercube [0, 1]s. The van der Corput sequence can
be generalized to any dimension s by simply taking28

Φ(n) = (Φp1(n), . . . ,Φps
(n)) (7)

where p1, . . . , ps are the first s prime numbers. There are many other ways to obtain quasi-random sequences in
dimension s.27
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For example, consider the integral

I =
∫ 1

0

∫ 1

0

sin(x y) dx dy. (8)

One may verify30 that

I =
∫ 1

0

− cos(x y)
y

dy = −Ci(1) + γ ≈ 0.2398117420005647259. (9)

Let {r̄1, . . . , r̄N}, be a pseudo random sample of the unit square [0, 1]× [0, 1] and {x̄1, . . . , x̄N} be a quasi-random
sample. Let

Ipr(N) =
1
N

N∑
i=1

f(r̄i), and Iqr(N) =
1
N

N∑
i=1

f(x̄i). (10)

We now study the sequences of errors generated with increasing sample points,

Ipr(10)− I, Ipr(20)− I, . . . , Ipr(5000)− I, and Iqr(10)− I, Iqr(20)− I, . . . , Iqr(5000)− I.

A useful way to visualize the result is to graph the points

{(10, Ipr(10)− I), . . . , (5000, Ipr(5000)− I)} and {(10, Iqr(10)− I), . . . , (5000, Iqr(5000)− I)},

and interpolating between the points in each case. Figure(3) shows the result. The reader may note that
since the dimension s = 2 is small in this case, a fine mesh might be used along with a good quadrature to
get an approximation better than the one obtained using pseudo-random sampling; however, the same sort of
comparison in the error between Monte Carlo integration and Quasi-Monte Carlo integration persists to higher
and higher dimensions because of the following well known inequality for reasonably behaved functions:27∣∣∣∣∣ 1

N

N∑
i=1

f(x̄i)−
∫
f(x̄) dx̄

∣∣∣∣∣ ≤ V ·DN (11)

where V is a constant depending only on f and DN is a quantity (called the discrepancy) depending on the
quasi-random sequence {x̄1, . . . , x̄N}. This inequality is called the Koksma–Hlwaka inequality and full details
may be found in the book by Niederreiter.27 We note here that because of this inequality, lower discrepancy
results in better approximations to the integral. One might expect that quasi-random numbers may be useful in
speeding up or otherwise increasing the quality of other Monte Carlo methods, however, we will see that there
are some subtleties in achieving such adaptations.

Figure 3 Monte Carlo integration error (red line approaching from above) vs Quasi-Monte Carlo inte-
gration error (green line approaching from below. The Quasi-Monte Carlo integration error converges
quickly and monotonically improves with more points. The standard MC integration error fluctuates with
no guarantee that adding more points will improve accuracy.
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a) Standard Monte Carlo Method. The results shown here for
the dissociation rate of nitrogen in modeling N2 −N2 collisions
are assumed to be converged, using 5, 000 sample points.

b) Quasi-Random Monte Carlo Method. The results shown
here for the dissociation rate of nitrogen in modeling N2 − N2

collisions are of equal quality to the converged solution, using
only 750 sample points.

Figure 4 The Quasi-Random Monte Carlo method yields results that are comparable with the best
(converged) results using the standard method. Here, only 750 quasi random are used to obtain accuracy
comparable to that obtained with 5,000 points using pseudo-random Monte Carlo.

A More Complicated Example
To explore the potential benefits of using quasi-random numbers in realistic applications, we implemented

a procedure for obtaining the dissociation rates for state-to-state chemical kinetics in joint work of Camberos,
Josyula, and Lambe31 a part of which we will summarize here.

State-specific dissociation rates coefficients of N2 − N2 collisions were calculated based on the semiclassical
theory of Macheret and Adamovich32 who adapted a FORTRAN program by Billing.33 We adapted the program
by replacing calls from a pseudo-random number generator to a specially adapted eight dimensional quasi-random
number generator. Figure (4) shows that the Quasi-Monte Carlo adaptation using only 750 samples compares
well with the Monte Carlo method using 5000 pseudo-random samples. Numerically, the norm of the difference
of the output is 0.0000000000309.

Experiments with DSMC
Results with DSMC and Quasi-Random Sequences (DSQMC)

In the late 1980s and early 1990s a number of authors investigated the effect of adapting Nanbu’s algorithm
to the quasi-random setting. Results by Babovsky et. al.20 and Lécot34 were fairly elaborate and the results
were apparently not as striking as the difference that quasi-random sequences make with respect to Monte Carlo
integration. In fact Bird comments on the work by Babovsky et. al. in Chapter 10 of his book.5 A much more
recent and successful attempt to adapt stochastic methods for gas dynamics to the quasi-random setting is the
work of McNenly and Boyd.23,24 McNenly studies the special case of collisionless flow and derives an algorithm
that achieves near linear error convergence rate using quasi-random sequences. We decided to begin a sequence
of experiments involving the full algorithm of Bird in this context. Our first results were a bit surprising and we
reported them in some detail in our first paper.35

Scrambling
In our first experiment, we simply replaced all of the calls to the PRNG by calls to a van der Corput

sequence. Not only was there no improvement in this case, the resulting algorithm did not converge! We actually
anticipated this result however. It is due to a well-known problem in trying to apply quasi-random sequences
in Monte Carlo algorithms which we believe was first reported by Morokoff and Caflisch in 199336 in studying
quasi-random random walk methods for the heat equation. This problem is due to the following number theoretic
fact concerning the van der Corput sequence base two. One has

Φ2(2n) <
1
2
, Φ2(2n+ 1) ≥ 1

2
. (12)
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These inequalities doom to failure any näıve attempt to replace a PRNG by the van der Corput sequence or
any other quasi-random sequence that has hidden correlations37 built-in due to the mathematical nature of the
algorithm used to implement them.

A general way to fix such problems is to scramble the quasi-random sequence – a procedure that goes at
least back to Cranley and Patterson38 in one form (1976) and Braaten and Weller37 in another form (1979).
The second form was considerably generalized by Owen.39 A detailed analysis of these procedures is beyond the
scope of this paper; we simply give a brief description of one form of scrambling. Recall that the building blocks
of the van der Corput sequence base b are the digits {0, . . . , b − 1} that make up the given integer n base b.
Suppose that there are β such digits in the expansion of n. Instead of constructing the number in [0, 1] as van
der Corput does, scramble the digits first. That is, choose β permutations σ1, . . . , σβ of the digits randomly and
apply them to each digit in order before doing the construction. Note that there are b! ·β different possibilities for
each n using this scheme just in dimension one! Note also that this is the first time that probability theory has
entered the subject of quasi-random numbers. As will be seen from our second experiment below, this addition
of “randomness” to quasi-random sequences is enough for the algorithm to converge once more.

The first two places where the PRNG is called in Bird’s code require three calls. The first two are for selecting
the two random particles as collision partners and the third involves the accept/reject inequality. In the quasi-
random setting, this should be interpreted as a three-dimensional process. The reason for this is what is known
as the fundamental theorem of simulation as it is called in the book by Christian and George,25 viz. choosing a
sample x according to a given distribution ρ is equivalent to conditionally sampling a pair (x, u) uniformly such
that u < ρ(x). In fact, this theorem leads directly to the classic accept/reject algorithm.

We replaced the three PRNG calls mentioned above with a scrambled three-dimensional quasi-random se-
quence for the accept/reject part of the algorithm. Next, we replaced the two PRNG calls to for the two
post-collision deflection angles with a scrambled two-dimensional quasi-random sequence. This resulted in a
computation that converged, but with only very slight improvement in the rate of convergence. A possible
reason for this is described in the next Section.

Smoothed Accept/Reject
It has been observed1–3 that the accept/reject algorithm for drawing a sample according to a given distribution

corresponds to a discontinuous integrand and as such, the Koksma–Hlwaka does not apply. However, Moskowitz
and Caflisch3 showed that the integrand could be smoothed so that the Koksma–Hlwaka does apply to the new
situation. This is done at the expense of introducing weights for the samples drawn. McNenly23 also observed
the inherent discontinuities of accept/reject and found a successful adaptation of a Monte Carlo method for the
special case of free-molecule gas flow he studied by eliminating the accept/reject stage using another algorithm;
however that method does not adapt to the general case.

Weighted particle methods for approximating the Boltzmann have already been introduced by Rjasanow and
Wagner.40–43 Since it was fairly trivial to adapt our previous code to the setting of smoothed accept/reject, we
decided to run this sort of experiment as well. There was an issue about how the weights should evolve in Bird’s
approach and we formulated an ad hoc algorithm for doing this. We make no claim that our ad hoc algorithm
is related to the work of Rjasanow and Wagner just cited.

Previously, we compared the results of calculations using the supersonic leading-edge problem as described
by Bird5 pp. 340-348, with flow conditions set to simulate the supersonic flow of nitrogen gas at Mach 4.
Convergence rates were not significantly improved. However, the algorithm was different enough from Bird’s
method to yield slightly different solutions for the pressure distribution (Figure 5) along the plate as well as
heating (Figure 6(b)) and shearing (Figure 6(a)). Without experimental or other validated data for comparison,
the result was inconclusive.

Our current effort sought to study a “Smoothed Accept/Reject,” or SAR, model for collisions among simulated
particles in the DSMC method. This new technique was observed to improve the accuracy of the DSMC method
for calculating one dimensional shock structures in Argon for a variety of Mach numbers when compared to
experimental data, which we will discuss below. We expect the method will extend to multi-dimensional codes
and plan to compare further against any existing experimental data.

Our overall objective sought to improve the accuracy of the DSMC method by changing the standard ac-
ceptance/rejection (AR) criteria for intermolecular collision processes intrinsic to DSMC. The work presented
here demonstrates an improvement in comparison to experimental data for a one-dimensional shock wave at
varying Mach numbers. The results are offered as proof-of-concept and represent just one simple change to the
conventional algorithm by the using a “smoothed accept/reject” (SAR) procedure – not a major revamping of the
DSMC methodology. This is a direct outgrowth of initial studies by the authors35 to accelerate the convergence
and reduce the statistical variance of the DSMC method by replacing the PRNG function calls with LDS.
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a) Pressure distribution along the plate with conventional
DSMC.

b) Pressure distribution along the plate with quasi-random
DSQMC

Figure 5 The pressure distributions along the plate show some difference when comparing conventional
DSMC with the quasi-random DSQMC results.

a) Comparison of friction coefficient with conventional DSMC
and quasi-random DSQMC.

b) Comparison of heat transfer coefficient with conventional
DSMC and quasi-random DSQMC

Figure 6 The friction and heat transfer coefficients along the plate show some difference when comparing
conventional DSMC with the quasi-random DSQMC results.

Briefly for review, the core of the DSMC method is a (simulated) stochastic process for a many-particle system
that evolves over time. The process begins with an initial distribution of particles at t = 0 about baseline values
in terms of velocities and energies. For all times after the initialized values, the system of particles is allowed
to evolve through a decoupled algorithm per time step of (simulated) collisions, followed by particle motion,
advancement of the time step and then more collisions and particle motion, etc., until final convergence in a
manner that “simulates” the behavior of the Boltzmann equation – hence the method’s name: Direct Simulation
Monte Carlo. Bird5 notes that:

simulation methods continue to suffer criticism for having a physical rather than a mathematical
foundation. In reply to this criticism, it can be pointed out that the Boltzmann equation was not
‘handed down carved in stone’

As noted previously, Wagner10 has demonstrated that the DSMC method does indeed converge to the solution of
the Boltzmann equation within an appropriate limit. The DSMC method at present uses pseudo-random number
generation (PRNG) sequences of numbers to calculate the random numbers necessary for stochastic modeling of
molecular simulation process including particle sampling, collision mechanics and post-collision velocity vector
orientation.
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The basics of the Bird algorithm5 for collision calculation are fairly simple. Elementary kinetic theory is
used to determine a collision frequency for each cell in the user defined ∆t-time step. This per-cell frequency
determines the number of simulated particle-pair collisions for the time interval. The probability of a pair of
particles colliding in that time period is then given by:

P =
FNσT cr∆t

Vc
(13)

where FN is the ratio of actual particles per simulated particle, σT is the relative collision cross section for
the particle pair, cr is the magnitude of the relative velocity vector for the pair, and VC is the volume of
the computational cell. The maximum value of this parameter is computed and stored for each cell. Pairs of
molecules are then selected randomly and compared to the maximum value for collision accept/reject criteria
wherein the collision is accepted and computed if:

Nrandom <
σT cr

(σT cr)max

(14)

where “Nrandom” is a random number obtained by either PRNG or LDS methods.
Our previous efforts sought to use LDS sequences of random numbers in place of the PRNG. As we noted

above, LDS numbers are more uniformly distributed in their domain and we hoped that this would endow the
DSMC sampling with a more uniform (smooth) distribution and reduce the statistical scatter in the sampled
particles. The reduced scatter would then yield a faster overall convergence in the simulated flow-field. The
LDS sequences are provably superior in generic Monte Carlo integration algorithms. Unfortunately, with the
exception of one velocity component, the use of LDS only matched the performance of the conventional use of
PRNG in DSMC methods in terms of convergence rates and variance. The flow-field solution for our test case
yielded no difference within acceptable limits between the PRNG and the LDS use in the DSMC method. In
order to improve the performance of the LDS, we thus attempted the construction of a modified “stochastic
weighted-particle method” as inspired by Rjasanow & Wagner.44

Preliminary Work and Proof-of-Concept
The stochastic weighted-particle method suffers from a curious complexity however – particles are created

with varying weights throughout the procedure, and then subsequently have to be destroyed in the procedure
in order to maintain conservation of mass. The method was therefore altered to a more simplified weighting
scheme with the use of LDS and compared to DSMC results from Bird’s two-dimensional codes.35 The results
of this modification yet again showed no significant reduction in statistical variance from the standard DSMC
treatment. However, the resulting flow-fields were markedly different than the results of the conventional DSMC
code. Further analysis by the authors (Greendyke and Bentley) confirmed that it was not the use of the LDS
that changed the results, but rather the use of the modified SAR algorithm. In the SAR algorithm used, rather
than use the single collision probability of

σT cr
(σT cr)max

. (15)

A “band” of accepted, but weighted collisions is determined with a parameter:

σT cr
(σT cr)max

± ε (16)

where ε is a predetermined fraction of the (σT cr)max value. In other words, if the value of Nrandom is such
that Nrandom < [(σT cr)/(σT cr)max − ε] the collision is accepted with an assigned weighting value of 1. If the
random number is such that Nrandom > [(σT cr)/(σT cr)max + ε], the collision is rejected and both collision
partners are assigned a weighting of zero for sampling purposes. However, if [(σT cr)/(σT cr)max− ε] < Nrandom <
[(σT cr)/(σT cr)max + ε], the collision is accepted, but with a weighting that varies linearly from zero to one. Note
that the assignment of a value of zero to the rejected pair of collisions means that only those particles that have
just collided – either fully accepted, or partially accepted (via weighting < 1) are included in overall sampling.
It was assumed that the exclusion of non-accepted particles would speed the convergence of the solution to local
equilibrium values for the computational cell in question, thereby accelerating the overall convergence. The
weighting factors then re-appear in the flowfield calculations through weighted averaging:

Q̄ =
∑
i wiQi∑
i wi

. (17)
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a) Shock profile (mass density). b) Shock profile (x-velocity).

Figure 7 1D Shock profile results for Mach 9 flow of Argon using Smoothed Accept/Reject parameter.

Q̄ represents the weighted-average of a generic flowfield parameter sampled in a given cell, Qi the value of Q
for each molecule i, and wi is the weighting assigned to the individual particle. Note that the above does NOT
apply to density calculations, since the assignment of a zero weighting, or some weighting value less than one,
would represent the destruction of mass in the system. For the calculation of density then, the denominator in
the formula (17) is the summation of all particles in the cell and their weights are ignored.

Test Case: 1D Shock Profile
To demonstrate our approach, we considered quasi-one-dimensional supersonic flow. A unique solution exists,

represented by a plane shock wave with flow direction determined by compression. These conditions have long
been studied in developing computational algorithms and interest continues to this day because they offer an
ideal case for comparing various gas dynamic models. Here, we calculate the profiles for various quantities (mass
density, temperature, and velocity) across a planar, steady shock wave. The study was performed by two of
the authors (Greendyke and Bentley) for a 1-D shock at Mach 9 in order to eliminate possible confusion about
the effect of multiple dimensions. When the one-dimensional shock was examined using both PRNG and LDS
sequences with a Smoothed Accept/Reject collision routine described above for a standing shock at Mach 9,
no appreciable differences were found between the two results for a given smoothing factor ε. With or without
smoothed A/R, LDS random numbers made no difference compared to conventional PRNG. What we do is that
there is a clear effect when changing the value of ε which results in a different shock structure profile: Figure(7)
shows the results for mass density (a) and x-velocity (b) for this case.

To pursue this line of reasoning further, the analysis was continued for standing shocks in Argon at a wider
range of Mach numbers using only the PRNG random number generation already inherent in the DSMC – the
use of LDS sequences involving far more computational complexity with apparently no perceivable improvement
in the overall algorithm. Note that standing shocks represent an interesting study for DSMC methods since
they have historically resulted in DSMC calculations indicating a much thicker shock than those found by
experiment,45 thereby highlighting a traditional weakness of the DSMC method. In addition to varying the
values of ε, the limiting cases of Bird’s standard method, and a modification of the Bird algorithm wherein
the accept/reject criteria was eliminated completely (by taking collision pairs chosen at random and accepted
without comparison to the maximum collision probability) were performed. The data was then compared to
the experimental results of Alsmeyer46 and data from other researchers included with Alsmeyer. Results were
obtained for Mach number values of 1.5, 2, 3, 6, and 9. The resulting inverse shock thicknesses, δ, are plotted
in Figure (8) along with the experimental data – the horizontal axis being Mach number, and the vertical being
inverse shock thickness. Note that the solid black line is a curve fit of the Alsmeyer data alone. In order to
incorporate the other researchers work presented in the Alsmeyer paper and reproduced in this figure, a 5th order
curve fit of all data present in the paper is also portrayed in the solid blue line in the figure. The “SAR Exx”
values represent the SAR results wherein the “xx” values are the percentage values of ε. The standard DSMC
values are shown as “Norm DSMC” points while the cases where the accept/reject criterion was eliminated are
given by the “NO AR” points.
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Figure 8 Comparison of inverse shock thickness with Smoothed Accept/Reject and conventional DSMC.
The black solid line is a curve fit for the Alsmeyer data only; the solid blue line is a curve fit for all exper-
imental data included. The adjustable parameter ε representing the authors’ Smoothed Accept/Reject
method yields inverse shock thickness values (vertical axis) that span the experimental data across the
range of Mach numbers (horizontal axis). The simulated quasi-1D flow is for the monatomic gas Argon.

Close examination of Figure (8) clearly shows that as Mach number increases, the standard DSMC method
predicts a much thicker shock (represented by a lower value of δ) than indicated in experimental results. This
effect becomes more significant with increasing Mach number. Completely eliminating the accept/reject criteria
in the collision simulation yields a much thinner shock than experiment – it is interesting to note that this “no
accept/reject” criteria still gives better agreement with experiment than higher-fidelity BGK solvers45 or modified
Navier-Stokes solution methods.47 The ”NO AR” results and standard DSMC cases thus represent the upper and
lower bounds of the computational results compared to experiment for the range of Mach numbers considered.
In contrast, our Smoothed Accept/Reject method yields excellent results in comparison to experimental data –
both the Alsmeyer curve fit as well as the current curve fit. The accuracy displayed by the SAR method depends
on the value of ε used, with better agreement at higher Mach numbers. The present comparison supports the
conjecture that the appropriate value of ε may depend on local Mach number, hinting at a functional relationship
of ε(M).

Given the results presented above, the SAR method represents at least a “tunable” parameter in DSMC
calculations that can improve the accuracy of the DSMC method with only a small accompanying change in
established DSMC codes. It is also equally likely that the new method represents a new way of simulating
particle interactions that may be more representative of the actual physics of the situation than the conventional
method. The SAR method alters the physics of the computation in three ways: (1) The use of a smoothed band
of accepted collisions, (2) the value of ε, and (3) the use of only freshly collided molecules in the determination of
flow-field quantities. We note finally that comparing 1D shock profiles for quantities such as mass density, heat
transfer, temperature, etc. yielded results similar to the shock thickness comparison, with improvement noted
upon using Smoothed A/R.
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Future Work
The work presented herein is entirely a “labor of love”. We have submitted funding proposals to continue

the analysis with graduate student talent and effort. Future work is envisioned to take place in two phases. The
first phase will consist of an extension of the work presented here. The SAR method will be incorporated into
two and three dimensional codes. The results of these calculations will be compared to existing experimental
data to determine the most appropriate values of the smoothing parameter – it should be pointed out that
no rule-of-thumb exists for the values of ε, and the use of values above was purely to determine the range of
effects obtained by various values. The SAR method outlined here is entirely new and novel – as such, there is
no existing body of theory for the method. The original justification for the method was entirely ad hoc and
phenomenological in nature – the effect of SAR calculations was observed, and noted to change DSMC results
in the correct direction. Its basis in physical theory is not entirely understood at present.

We will focus the second phase of the project on developing the physical models behind the SAR method, as
well as alternative modeling techniques. Not only do studies need to be performed to determine correct values
of ε used in the SAR method, but a study of the physical basis for the observed effect needs to be conducted.
Several alternative models for the convergence of the collision processes will also be examined, with the effects
compared to appropriate experimental data. One such method would involve the abandonment of the stochastic
determination of “acceptable” collisions in favor of a deterministic selection process among available molecular
collision pairs inside a computational cell to speed convergence to local thermodynamic equilibrium. For instance,
collision partners could be taken directly from the cell’s particle velocity distribution wherein a high velocity
particle is paired for a collision with a low velocity particle intentionally. The thought behind this concept is
that by directly choosing particles from opposing sides of the velocity distribution function the resulting post-
collision velocities for both colliding molecules will approach the most probable velocity of a localized Maxwellian
distribution function. The effect will then be to force the computational cell more rapidly to a local equilibrium
and thereby speed convergence as well as reduce the statistical variance observed in DSMC methods. The overall
nonequilibrium of the flow-field will still be maintained by the code however – the method just described would
only hasten local equilibrium – which is already intrinsic to the DSMC method. Nonequilibrium is maintained,
as in the standard DSMC method, by “piecewise equilibrium” since the local cell’s equilibrium is not dependent
on the surrounding cells being in overall equilibrium with the cell in question.

Direct Methods
Another promising approach that we plan to pursue deals with the direct method7,48–51 for approximating

solutions to Boltzmann’s equation. This involves approximating the Boltzmann collision integral directly and
goes back to the 1960s work by Nordsieck and Hicks48 and Desphande and Narasimha.49 Deshpande and
Narasimha49 actually derive an analytic expression for the collision integral in the special case when the initial
distribution is a sum of Maxwellian probability densities. In that case, the collision integral is explicitly

1
π

∫
R3

∫ 2π

0

∫ π

0

||w̄||eh(u,w̄,φ,ψ)e−||w̄||
2
sinφdφ dψ dw̄ (18)

where u is a parameter, φ ∈ [0, π], ψ ∈ [0, 2π], w̄ ∈ R3, and the function h is given by

h(u, w̄, φ, ψ) = −2u2 +u (w1 + w2 + (w2 − w1) cosφ)+u sinφ sinψ

(√
w2

2 + w2
3 +

||w̄||w3 cotψ + w1w2√
w2

2 + w2
3

)
. (19)

The value of this integral at u = 0.20 is 2.4793846754936771044. We use importance sampling with respect to
the distribution e−||w̄||

2
in the integrand and compare Monte Carlo integration to Quasi-Monte Carlo integration

for the evaluation of this integral. Using the known value from the analytic solution, we can compare the errors
using both methods as the number of samples increases. The graph of the analytic solution as a function of u is
given in Figure(9(a)). The graph comparing the error obtained with MCI to the error obtained with QMCI are
given in Figure(9(b)). Notice that the quasi-random integration has essentially converged at about 2500 samples
(green line) whereas the pseudo-random integration is still oscillating at 5000 samples (red oscillating line). This
is a considerable reduction of work; to quantify we would need to continue the standard MCI calculation to the
same level of convergence as the QMCI result (not shown).

A general theory for importance sampling in the direct evaluation of the Boltzmann collision integral has
been developed in a series of papers50,51 in which it is shown that if the importance sampler is chosen carefully,
a considerable reduction in the number of samples for Monte Carlo integration can be made. We believe that
this reduction can be lowered still if these methods are combined with smoothed accept/reject in conjunction
with quasi-random methods for drawing the samples. Results of experiments along these lines will be reported
in our forthcoming analyses.
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a) The graph of an analytic expression for the collision integral. b) Error graphs for samples going from 50 to 5000 comparing
MCI to QMCI for a 5D collision integral

Figure 9 Comparison of standard MC and quasi-random MC convergence for 5D collision integral.
The quasi-random integration has essentially converged at about 2500 samples (green line) whereas the
pseudo-random integration is still oscillating at 5000 samples (red oscillating line).

Conclusions
We have noted that some caution must be used in adapting Monte Carlo methods to the quasi-random

case. In cases where the Koksma–Hlwaka inequality applied, we saw a great improvement in the adapted
algorithm. It has been observed1–3 that the accept/reject algorithm for drawing a sample according to a given
distribution corresponds to a discontinuous integrand and as such, the Koksma–Hlwaka inequality does not apply.
Considerable improvement has also been observed using quasi-random samples with smoothed accept/reject
algorithms. As we pointed out, McNenly23 also observed the inherent discontinuities of accept/reject and found
a successful adaptation of a Monte Carlo method for the special case of free-molecule gas flow he studied by
eliminating the accept/reject stage using another algorithm. We began a sequence of experiments to see what
could be done to possibly improve Bird’s DSMC algorithm and have seen, consistent with other researchers, that
simply replacing calls to a PRNG can give incorrect results. Correcting that by scrambling can lead to correct
results, but not necessarily a vast improvement in DSMC. Adapting the direct method to the quasi-random setting
in connection with smoothed accept/reject for importance sampling however has a very promising outlook. We
will continue with the SAR method by extending it to two and three dimensional modeling and the results
compared to known experimental data in the literature. Further along, we will re-examine the fundamental
physics upon which the Accept/Reject stages of the DSMC algorithm is based, not just ad-hoc improvements to
the implementation.
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22Lécot, C., “A quasi-Monte Carlo method for the Boltzmann equation,” Math. Comp., Vol. 56, No. 194, 1991, pp. 621–644.
23McNenly, M. J., Toward the Improved Simulation of Microscale Gas Flow , Ph.D. thesis, Univ. of Michigan, 2007.
24McNenly, M. J. and Boyd, I. D., “Investigating the use of low-discrepancy sequences in particle simulations for rarefied gas

flows,” Department of Energy Computational Science Graduate Fellowship Annual Fellows Conference, Krell Institute, Washington,
DC, June 21-23 2005, http://www.krellinst.org/csgf/conf/2005/presentations/.

25Robert, C. P. and Casella, G., Monte Carlo Statistical Methods, Springer-Verlag, New York: NY, 2nd ed., 2004.
26van der Corput, J. G., “Verteilungsfunktionen,” Proc. Ned. Akad. v. Wet., Vol. 38, 1935, pp. 813–821.
27Niederreiter, H., Random number generation and quasi-Monte Carlo methods, Vol. 63 of CBMS-NSF Regional Conference

Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
28Halton, J. H., “On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals,”

Numer. Math., Vol. 2, 1960, pp. 84–90.
29Faure, H., Monte-Carlo and quasi-Monte-Carlo methods for numerical integration, World Scientific, 2001.
30Abramowitz, M. and Stegun, I. A., editors, Handbook of mathematical functions with formulas, graphs, and mathematical

tables, John Wiley & Sons Inc., New York, 1984, Reprint of the 1972 edition, Selected Government Publications.
31Camberos, J. A., Josyula, E., and Lambe, L. A., “Quasi-Random Monte Carlo Integration for Computing Dissociation Rates,”

AIAA Paper 2007–4260 , June 2007.
32Macheret, S. O. and Adamovich, I. V., “Semiclassical Modeling of State-Specific Dissociation Rates in Diatomic Gases,”

Journal of Chemical Physics, Vol. 113, No. 17, 2000, pp. 7351–7361.
33Billing, G. D., “Rate Constants and Cross Sections for Vibrational Transitions in Atom-Diatom and Diatom-Diatom Colli-

sions,” Computer Physics Communications, Vol. 32, 1984, pp. 45–62.
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